Приложение ППССЗ/ППКРС по специальности 09.02.07 Информационные системы и программирование (специалист по информационным системам) 2022-2023 уч.г.: Комплект контрольно-оценочных средств учебной дисциплине EH.01 Элементы высшей математики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ БЕЛГОРОДСКОЙ ОБЛАСТИ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «АЛЕКСЕЕВСКИЙ КОЛЛЕДЖ»

Комплект контрольно-оценочных средств

по учебной дисциплине

ЕН.01 Элементы высшей математики

для специальности 09.02.07 Информационные системы и программирование (специалист по информационным системам)

Комплект контрольно-оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.07 Информационные системы и программирование (специалист по информационным системам)

Составитель:

Кузнецова И.С., преподаватель ОГАПОУ «Алексеевский колледж»

1. Паспорт комплекта оценочных средств

1.1 Область применения комплекта оценочных средств

Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ЕН.01 Элементы высшей математики

КОС включают контрольные материалы для проведения текущей и промежуточной аттестации в форме экзамена.

КОС разработан на основании рабочей программы учебной дисциплины EH.01 Элементы высшей математики.

1.2 Цели и задачи учебной дисциплины — **требования к результатам освоения программы:**

- В результате освоения учебной дисциплины обучающийся должен уметь:
- У1 выполнять операции над матрицами и решать системы линейных уравнений;
- У2 решать задачи, используя уравнения прямых и кривых второго порядка на плоскости;
 - УЗ применять методы дифференциального и интегрального исчисления;
 - У4 решать дифференциальные уравнения;
 - У5 пользоваться понятиями теории комплексных чисел.
- В результате освоения учебной дисциплины обучающийся должен знать:
- 31 основы математического анализа, линейной алгебры и аналитической геометрии;
 - 32 основы дифференциального и интегрального исчисления;
 - 33основы теории комплексных чисел.

Профессиональные (ПК) и общие (ОК) **компетенции**, которые актуализируются при изучении учебной дисциплины:

- ОК 01.Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста

Планируемые личностные результаты освоения рабочей программы:

ЛР 4. Проявляющий и демонстрирующий уважение к людям труда, осознающий ценность собственного труда. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа».

- ЛР 7. Осознающий приоритетную ценность личности человека; уважающий собственную и чужую уникальность в различных ситуациях, во всех формах и видах деятельности.
- ЛР 8. Проявляющий и демонстрирующий уважение к представителям различных этнокультурных, социальных, конфессиональных и иных групп. Сопричастный к сохранению, преумножению и трансляции культурных традиций и ценностей многонационального российского государства.
- ЛР 11. Проявляющий уважение к эстетическим ценностям, обладающий основами эстетической культуры.

1.3 Результаты освоения учебной дисциплины, подлежащие проверке

Наименование тем	Коды умений (У), знаний (З), личностных результатов (ЛР), формированию которых способствует элемент программы	Средства контроля и оценки результатов обучения в рамках текущей аттестации (номер задания)	Средства контроля и оценки результатов обучения в рамках промежуточной аттестации (номер задания/контрольного вопроса/ экзаменационного билета)
Тема 1. Основы теории комплексных чисел.	У5 33 ЛР 4	ПЗ № 1	ЭБ № 11-20
Тема 2. Теория пределов	У3 31 32 ЛР 7	ПЗ № 2	ЭБ № 1-10, 20-30
Тема 3. Дифференциальное исчисление функции одной действительной переменной	УЗ 31 32 ЛР 8	ПЗ № 3 ПЗ № 4	ЭБ № 1-10, 20-30
Тема 4. Интегральное исчисление функции одной действительной переменной	УЗ 31 32 ЛР 8	ПЗ № 5 ПЗ № 6	ЭБ № 1-10, 20-30
Тема 5. Дифференциальное исчисление функции нескольких действительных переменных	У3 31 32 ЛР 11	T3 № 5	ЭБ № 11-20
Тема 6.	У3	T3 № 6	ЭБ №11-20

Интегральное исчисление функции нескольких действительных переменных	31 32 ЛР 4		
Тема 7. Теория рядов	У3 31 32 ЛР 7	ПЗ № 7	ЭБ №11-20
Тема 8. Обыкновенные дифференциальные уравнения	УЗ У4 31 32 ЛР 8	ПЗ № 8 ПЗ № 9	ЭБ № 11-20
Тема 9. Матрицы и определители	У1 31 ЛР 4	ПЗ № 10 ПЗ № 11 ПЗ № 12	ЭБ № 1-20
Тема 10. Системы линейных уравнений	У1 31 ЛР 11	ПЗ № 13 ПЗ № 14	ЭБ № 9, 19, 21-30

2. Комплект оценочных средств для текущей аттестации

2.1. Практические задания (ПЗ)

ПЗ № 1. Тема: Действия над комплексными числами в алгебраической форме.

Цели:

- рассмотреть различные виды представления комплексных чисел;
- развивать умение решать задачи, связанные с выполнением действий над комплексными числами в алгебраической форме;
- воспитывать аккуратность в расчетах, умение владеть навыками работы с информацией.

Вопросы для обсуждения.

- 1. Понятие и представление комплексных чисел.
- 2. Геометрическое изображение комплексных чисел.
- 3. Формы записи комплексных чисел.
- 4. Действия над комплексными числами в алгебраической форме.

Решение задач.

<u>Задача 1.</u> Указать точки, изображающие комплексные числа: z_1 =1+2i, z_2 =-3-4i, z_3 =5-i, z_4 =- $\sqrt{3}+i$, z_5 =2i, z_6 =7, z_7 =-9, z_8 =- $\sqrt{2}i$

<u>Задача 2.</u> Для заданных комплексных чисел записать им противоположные и сопряженные:

Z	-Z	
-3+5 <i>i</i>		
4- <i>i</i>		
4- <i>i</i> -6-6 <i>i</i> 8+3 <i>i</i>		
8+3 <i>i</i>		
<i>5i</i>		
-7 <i>i</i>		

<u>Задача 3.</u> Решить уравнения: a) $x^2+3x+4=0$; б) $x^2-4x+13=0$

<u>Задача 4.</u> Даны числа z_1 =2+3i, z_2 =1-2i. Найти z_1 + z_2 , z_1 - z_2 , z_1 z₂, $\frac{z_1}{z_2}$.

<u>Задача 5.</u> Даны числа z_1 =-2+5i, z_2 =3-4i. Найти z_1 + z_2 , z_1 - z_2 , z_1 z₂, $\frac{z_1}{z_2}$.

Задача 6. Вычислить: $\frac{2+i}{3+4i}$

<u>Задача 7.</u> Вычислить: $\frac{\frac{1}{2} - 3i}{2 + \frac{1}{3}i}$

<u>Задача 8.</u> Найдите x и y из уравнения: (1+2i)x+(3-5i)y=1-3i

Задача 9. Вычислить: $z^2 u z^4$, если $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Задача 10. Найти: i^{59} , i^7 , i^{32} .

<u>Задача 11.</u> Выполнить действия: $\left(-2 + \left(1 + i\right)^3 + \frac{31 - 17i}{4 - 3i}\right) \cdot \frac{1 + i}{6} - 1$

Литература:

1. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. — 3—е изд., перераб. и доп. — М.: Издательство Юрайт; ИД Юрайт, 2010. — 909 с.

- 2. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. М: Проспект, 2003. 548 с.
- ПЗ № 2. Тема: Вычисление пределов. Раскрытие неопределённостей $\left(\frac{0}{0}\right)$ и $\left(\frac{\infty}{\infty}\right)$.

Цель: - научиться вычислять пределы, раскрывать неопределенности вида $\frac{3}{0}$

- научиться вычислять пределы, раскрывая неопределенности вида $\stackrel{-}{\circ}$.

І. Теоретическая справка.

<u>Связь между бесконечно малыми и бесконечно большими</u> величинами.

- 1. Если функция $\alpha(x)$ есть бесконечно малая величина при $x \to x_0 \ (x \to \infty)$, то функция $f(x) = \frac{1}{\alpha(x)}$ является бесконечно большой.
- 2. Если функция f(x) есть бесконечно большая величина при $x \to x_0$ ($x \to \infty$), то функция $\alpha(x) = \frac{1}{f(x)}$ является бесконечно малой величиной при $x \to x_0$ ($x \to \infty$).

Основные теоремы о пределах.

- 1. Функция не может иметь более одного предела.
- 2. Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.е. $\lim_{x \to x_0(\infty)} [f(x) \pm g(x)] = \lim_{x \to x_0(\infty)} f(x) \pm \lim_{x \to x_0(\infty)} g(x)$
- 3. Предел произведения конечного числа функций равен произведению пределов этих функций, т.е. $\lim_{x \to x_0(\infty)} [f(x) \cdot g(x)] = \lim_{x \to x_0(\infty)} f(x) \cdot \lim_{x \to x_0(\infty)} g(x)$
- 4. Постоянный множитель можно выносить за знак предела, т.е. $\lim_{x\to x_0(\infty)}[c\cdot f(x)]=c\cdot \lim_{x\to x_0(\infty)}f(x)$
- 5. Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.е. $\lim_{x \to x_0(\infty)} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0(\infty)} f(x)}{\lim_{x \to x_0(\infty)} g(x)}$
- 6. Если $\lim_{u \to u_0} f(u) = A$, $\lim_{x \to x_0} g(x) = u_0$, то предел сложной функции $\lim_{x \to x_0} f[g(x)] = A$
- 7. Если в некоторой окрестности точки x_0 (или при достаточно больших x) f(x) < g(x), то $\lim_{x \to x_0(\infty)} f(x) \le \lim_{x \to x_0(\infty)} g(x)$

<u>Правила раскрытия неопределенности $\frac{0}{0}$.</u>

1. При раскрытии неопределенности $\frac{0}{0}$, если в числителе и знаменателе дроби многочлены, нужно разложить их на множители и сократить.

- При раскрытии неопред.еленности $\frac{0}{0}$, если в числителе и (или) 2. знаменателе дроби присутствует выражение с корнем, нужно помножить числитель и знаменатель дроби на выражение сопряженное к тому, где есть корень, избавиться от иррациональности в числителе и (или) знаменателе, сократить образовавшийся общий множитель.
- неопределенности 3. Правило раскрытия ДЛЯ раскрытия

неопределенности ∞ нужно числитель и знаменатель дроби разделить на наивысшую степень переменной, сократить, воспользоваться правилом связи между бесконечно малыми и бесконечно большими величинами.

между бесконечно малыми и бесконечно большими велич
$$\frac{\Phi o p m y л ы c o k p a u u e h h o z o y m h o ж e h u s.}{(x+c)(x-c)=x^2-c^2;}$$
$$(x+c)(x^2-xc+c^2)=x^3+c^3;$$
$$(x-c)(x^2+xc+c^2)=x^3-c^3.$$

Вычислите пределы

1.
$$\lim_{x \to 2} (5x^3 - 6x^2 + x - 5)$$
2. $\lim_{x \to 2} \frac{4x^2 - 25x + 25}{x^2 + 15x - 30}$
3. $\lim_{x \to -1} \frac{x^2 + 5x - 3}{\log_2(x^2 + 1)}$
4. $\lim_{x \to 2} \frac{8}{4x - 8}$
5. $\lim_{x \to 3} \frac{8x^3}{4x - 12}$
6. $\lim_{x \to 1} \frac{3x^2 + 5x + 8}{2x^2 + 3x + 5}$

<u>Раскрытие неопределенности</u> $\frac{0}{0}$ (случай, когда в числителе и знаменателе многочлены)

7.
$$\lim_{x \to 0} \frac{x^3 - x^2 + 2x}{x^2 + x} = 2$$
8.
$$\lim_{x \to -2} \frac{x^2 - 4}{2 + x} = -4$$
9.
$$\lim_{x \to 3} \frac{3 - x}{x^3 - 27} = -1 \setminus 27$$
10.
$$\lim_{x \to -1} \frac{x^2 - 4x - 5}{x^2 - 2x - 3} = 1,5$$
11.
$$\lim_{x \to -1} \frac{3x^2 + 2x - 1}{-x^2 + x + 2} = -4 \setminus 3$$
12.
$$\lim_{x \to 3} \frac{3x^2 - 11x + 6}{2x^2 - 5x - 3} = 1$$
13.
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6} = 2,4$$
14.
$$\lim_{x \to 4} \frac{16 - x^2}{x^3 - 64} = -1 \setminus 6$$
15.
$$\lim_{z \to a} \frac{z^2 - a^2}{a^4 - z^4}$$

<u>Раскрытие неопределенности</u> $\frac{0}{0}$ (случай, когда в числителе и(или) знаменателе присутствует выражение с корнем)

16.
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x}-2}$$
17.
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4}-2}$$
18.
$$\lim_{x \to 3} \frac{\sqrt{2x+3}-3}{3-x}$$
19.
$$\lim_{x \to 1} \frac{\sqrt{x}-\sqrt{2}-x}{x-1}$$
20.
$$\lim_{x \to -2} \frac{2-\sqrt{6}+x}{\sqrt{7-x}-3}$$
21.
$$\lim_{x \to 2} \frac{\sqrt{4x+1}-3}{\sqrt{x+2}-2}$$

Вычислите пределы, где нужно воспользуйтесь правилом раскрытия <u>неопределенности</u> $\stackrel{\infty}{-}$ <u>или ∞-∞.</u>

22.
$$\lim_{x\to\infty} (x^2 - 5x + 6)$$

23.
$$\lim_{x \to -\infty} (x^3 + 3x^2)$$

24.
$$\lim_{x \to \infty} \frac{2}{x^2 + 3x}$$

$$25. \quad \lim_{x\to\infty} \left(5 + \frac{2}{x} - \frac{3}{x^2}\right)$$

$$26. \lim_{x\to\infty}\frac{3x}{x-2}$$

27.
$$\lim_{x \to \infty} \frac{x-8}{2x-2}$$

28.
$$\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 1}{x^3 + 4x^2 + 2x}$$

29.
$$\lim_{x \to \infty} \frac{3x^2 - 5x + 4}{x^2 + 2x + 3}$$

30.
$$\lim_{x\to\infty} \frac{4x^3-x^2}{x^3+3x^2-1}$$

31.
$$\lim_{x\to\infty} \frac{x^5 + x^6}{x^3 + x^4}$$

32.
$$\lim_{x \to \infty} \frac{2x^4 - x^3 + 1}{x^3 + 2x^2 + x}$$

$$33. \lim_{x\to\infty} (\sqrt{x^2-x}-x)$$

III. Аудиторная самостоятельная работа.

1.
$$\lim_{x \to 4} \frac{3x^2 + 5x - 8}{2x^2 + 3x - 5}$$

$$2. \quad \lim_{x \to 1,5} \frac{2x^2 - x - 3}{2x^2 - 5x + 3}$$

$$3. \quad \lim_{x \to 4} \frac{x - \sqrt{3x + 4}}{16 - x^2}$$

4.
$$\lim_{x \to -3} \left(\frac{1}{x+3} - \frac{6}{9-x^2} \right)$$

5.
$$\lim_{x \to 2} \frac{x^2 - x + 1}{x - 3}$$

6.
$$\lim_{x \to -2} \left(\frac{1}{x-2} - \frac{12}{x^3 - 8} \right)$$

7.
$$\lim_{x \to 0} \frac{3x^2 - 2x}{2x^2 - 5x}$$

8.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{3x^2 - 9x}$$

$$9. \quad \lim_{x \to 0} \frac{x}{\sqrt{5-x} - \sqrt{5+x}}$$

$$\lim_{x\to\infty}\frac{\lim_{x\to\infty}\frac{x^2-x+1}{x-3}}$$

$$\lim_{x \to \infty} \frac{x-3}{x^2 - 9}$$

$$\lim_{x \to \infty} \frac{4x^2 - 9}{2x + 3}$$

$$\lim_{x \to \infty} \frac{3x^2 - 8x + 4}{5x^2 - 14x + 8}$$

$$\lim_{x \to \infty} \frac{x^2 - 7x + 10}{x^2 - 9x + 20}$$

$$\lim_{x \to \infty} \frac{2x^2 + x - 15}{3x^2 + 7x - 6}$$

$$\lim_{x \to \infty} \frac{3x^2 + 5x + 2}{3x^2 + 8x + 4}$$

$$\lim_{x \to \infty} \frac{3 - \sqrt{x}}{4 - \sqrt{2x - 2}}$$

$$\lim_{18.} \frac{\lim_{x \to \infty} \frac{\sqrt[3]{x} - 3}{\sqrt{x} - 1}}{\sqrt{x} - 1}$$

Контрольные вопросы

- 1. Что называется числовой последовательностью?
- 2. Что называется пределом числовой последовательности?
- 3. В чем состоит геометрический смысл предела числовой последовательности?
- 4. Какие числовые последовательности называются сходящимися, а какие расходящимися?
- 5. Что называется пределом функции в бесконечности?
- 6. Что называется пределом функции в точке?
- 7. Какая функция называется бесконечно малой величиной?
- 8. Связь бесконечно малых величин с пределами функций?
- 9. Свойства бесконечно малых величин?
- 10. Какая функция называется бесконечно большой величиной?
- 11. Свойства бесконечно больших величин?
- 12. Связь между бесконечно малыми и бесконечно большими величинами?
- 13. Правило раскрытия неопределенности $\frac{0}{0}$
- 14. Какая функция называется бесконечно большой величиной?
- 15. Каковы свойства бесконечно больших величин?
- 16. Какая функция называется бесконечно малой величиной?
- 17. Каковы свойства бесконечно малых величин?
- 18. В чем заключается связь между бесконечно малыми и бесконечно большими величинами?

ПЗ № 3. Тема: Вычисление производных сложных и обратных тригонометрических функций.

Цель: Научить дифференцировать функцию одной действительной переменной.

Оборудование: Рабочие тетради, ручки, вычислительная техника (калькулятор).

Порядок работы:

I. Теоретическая справка. c' = 0, c' = const

1.
$$c' = 0$$
, $c = const$

$$2. \left(x^n\right)' = nx^{n-1}$$

$$3. \left(a^{x}\right)' = a^{x} \cdot \ln a$$

$$4. \left(e^{x}\right)' = e^{x}$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

6.
$$(\ln x)' = \frac{1}{x}$$

7. $(\sin x)' = \cos x$

7.
$$(\sin x)' = \cos x$$

8.
$$(\cos x)' = -\sin x$$

$$9. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

$$16. \left(\sinh x \right)' = \cosh x$$

17.
$$(\cosh x)' = \sinh x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

III. Решение задач:

Найти производные функций

1. a)
$$y = 2x + 8$$
, $y = 3x^2 + x + 7$, $y = 4\sqrt{x}$

1.
$$a) y = 2x + 8,$$
 $y = 3x^2 + x + 7,$ $y = 4\sqrt{x} + x^2 - 5,$
2. $y = x^4 + \sqrt{x},$ $y = 2x^4 + x^2 + \sqrt[3]{x} + 9,$ $y = 3 - 7x + 8x^3.$

3.
$$y = (x-3)(x+5), \quad y = x^3(x-\sqrt{x}), \qquad y = 3x(x^2 - \frac{3}{5}\sqrt{x}),$$

$$y = (x^3 - 2x + 1)(1-5x-8x^2)$$

4.
$$y = \frac{3x-1}{5x+7}$$
, $y = \frac{x^2-1}{3+5x}$, $y = \frac{x^3}{x^2-4}$,

5.
$$y = \sin 2x$$
, $y = \cos 3x$, $y = \sin 2x - \cos 3x$, $y = x \sin x$, $y = \sin 3x \cos 5x$, $y = \sin^2 x$, $y = x \cot 2x - \tan^3 3x$, $y = \sin^2 x - \cos^2 x$, $y = tg^3 3x + tg(x+3)^3$, $y = ctg 4x - tg 2x$.

6.
$$y = x^2 2^{8x+5x^2}, y = (3x^2 - 1)e^{\frac{3}{x}}$$

7.
$$y = arctg\sqrt{x-1}$$

8.
$$y = \arcsin 7x$$

9.
$$y = arctg3x$$

10.
$$y = \arccos(4x - 1)$$

11.
$$y = x^4 \arccos x$$

12.
$$y = \sin^2 3x$$

$$13. y = \frac{\cos^3 \ln x}{2\sin^2 2x}$$

$$14. y = \sqrt{x}ctg3x + 2x^2$$

15.
$$y = \frac{3-x}{2}\sqrt{1-2x-x^2} + 2\arcsin\frac{1+x}{\sqrt{2}}$$

Найти производные показательных и логарифмических функций.

16.
$$y = \lg x + x^3$$
, $y'(-1) - ?$

17.
$$y = \ln^3 3x$$

18.
$$y = 3^{\ln x}$$

19.
$$v = e^{-x^2}$$

20.
$$y = x^2 2^{8x+5x^2}$$

21.
$$y = (3x^2 - 1)e^{\frac{3}{x}}$$

22.
$$y = (x^2 + 7) \ln x^5$$

$$23. y = \frac{\ln x}{x^2 - 3x}$$

IV. Аудиторная самостоятельная работа:

1.
$$y = \sin 2x$$

2.
$$v = \cos 3x$$

3.
$$y = \sin 2x - \cos 3x$$

4.
$$y = x \sin x$$

5.
$$y = \sin 3x \cos 5x$$

$$6. \quad y = \sin^2 x$$

7.
$$y = xctgx$$

$$8. \quad y = ctg2x - tg^33x$$

$$9. \quad y = \sin^2 x - \cos^2 x$$

10.
$$y = tg^3 3x + tg(x+3)^3$$

11.
$$y = ctg4x - tg2x$$

12.
$$y = \frac{\sin^2 \ln(x+2)}{2\cos^3 2x}$$

13.
$$y = \sin 2x$$

14.
$$y = \cos 3x$$

$$15. \ y = \sin 2x - \cos 3x$$

16.
$$y = x \sin x$$

$$17. \ \ y = \sin 3x \cos 5x$$

18.
$$y = \sin^2 x$$

19.
$$y = xctgx$$

20.
$$v = ct \varphi 2x - t \varphi^3 3x$$

21.
$$v = \sin^2 x - \cos^2 x$$

22.
$$y = tg^3 3x + tg(x+3)^3$$

23.
$$y = ctg4x - tg2x$$

24.
$$y = \frac{\sin^2 \ln(x+2)}{2\cos^3 2x}$$

IV. Контрольные вопросы.

- 1. Задачи, приводящие к понятию производной.
- 2. Дать определение производной.
- 3. Правила дифференцирования.
- 4. Производная сложной функции.
- 5. Производная обратной функции.
- 6. Производная логарифмической и показательной функций.
- 7. Производная степенной функции.
- 8. Производные тригонометрических функций.
- 9. Как найти производные тригонометрических функций?
- 10. Как найти производные обратных тригонометрических функций?
- 11. Как найти производные показательных функций?
- 12. Как найти производные логарифмических функций?

ПЗ № 4. Тема: Вычисление дифференциала функции и производных высших порядков.

Цель: научиться вычислять производные и дифференциалы высших порядков, применять дифференциал для приближенных вычислений.

III. Теоретическая справка.

... <u>Дифференциал функции.</u>

1) Если дана дифференцируемая функция y = f(x), то её приращение $\Delta y = f'(x) \cdot \Delta x + \alpha \cdot \Delta x$, где $\alpha \to 0$, когда $\Delta x \to 0$.

2) При $\Delta x \to 0$ величина $\alpha \cdot \Delta x$ есть бесконечно малая высшего порядка, чем Δx .

<u>Определение.</u> Дифференциалом функции y = f(x) называется произведение производной этой функции на приращение независимой переменной. Дифференциал функции обозначается символом dy, т.е. $dy = f'(x) \cdot \Delta x$.

<u>Определение.</u> Дифференциалом независимой переменной называется её приращение $dx = \Delta x$, поэтому можно сказать, что дифференциалом функции называется произведение её производной на дифференциал независимой переменной: $|dy = f'(x) \cdot dx|$, $\Delta y = dy + \alpha \cdot \Delta x$

- 3) Так как величина $\alpha \cdot \Delta x$ есть бесконечно малая высшего порядка, чем Δx , то разность $\Delta y - dy$, есть величина бесконечно малая высшего порядка, чем Δx .
- 4) Для вычисление дифференциала функции необходимо задать начальное значение независимой переменной и её приращение Δx .
- 5) Если Δx мало, а $f'(x) \neq 0$, то величина $\alpha \cdot \Delta x$, входящая в приращение функции, значительно меньше, чем дифференциал функции dy, причём тем меньше, чем меньше Δx .
- 6) Вычисление Δy приращения функции может быть с хорошим приближением заменено вычислением дифференциала функции dy, который вычислить значительно проще, так как для этого требуется только найти производную этой функции и умножить её на приращение независимой переменной $\Delta y \approx dy$
- Так как $\Delta y \approx dy$, учитывая что $\Delta y = f(x + \Delta x) f(x)$, следует $f(x + \Delta x) f(x) \approx f'(x) \Delta x$, то есть $f(x + \Delta x) \approx f(x) + f'(x) \Delta x$. По этой формуле находят 7) Так приближенное значение функции в точке $x + \Delta x$ близкой к x, то есть можно использовать дифференциал в приближенных вычислениях.
- 8) Таблица для вычисления дифференциалов основных элементарных функций получается из таблицы для вычисления производных этих функций путём умножения соответствующей производной на дифференциал независимой переменной dx.
- 9) Правила дифференцирования: d(cu) = cdu

$$d(u \pm v) = du \pm dv$$
$$d(uv) = udv + vdu$$

$$d(uv) = udv + vdu$$

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

Дифференциал функции в приближенных вычислениях.

- $f(x + \Delta x) \approx f(x) + f'(x)\Delta x$ 1)
- $(1 + \Delta x)^n \approx 1 + n\Delta x$ 2)
- $\sin \Delta x \approx \Delta x$ 1. При использовании этих формул нужно градусы переводить в радианы. 3)
- $tg\Delta x \approx \Delta x$ 2. Если градусная мера угла меньше 3°, то вычисления выполняются с 4) точностью до четырех знаков.
 - 3. Если градусная мера угла меньше 7° , но больше 3° , то с точностью до
 - 4. Если градусная мера угла больше 7° , то используют общую формулу (1) или частные

(5,6) $\sin(x + \Delta x) \approx \sin x + \cos x \cdot \Delta x$

6)
$$tg(x + \Delta x) \approx tgx + \frac{\Delta x}{\cos^2 x}$$

7)
$$\ln\left(1 + \frac{\Delta x}{x}\right) \approx \frac{\Delta x}{x}$$

8)
$$\ln(x + \Delta x) \approx \ln x + \frac{\Delta x}{x}$$

9)
$$e^{\Delta x} \approx 1 + \Delta x$$

Производные высших порядков

Вторая производная функции y = f(x) - это производная от производной первого порядка, обозначается одним из символов: y'' (читается: игрек два штриха), f''(x) (читается: эф два штриха от икс), $\frac{d^2y}{dx^2}$ (читается: дэ два игрек по дэ икс дважды).

Третья производная функции y = f(x) - это производная от производной второго порядка, обозначается одним из символов: y''', f'''(x), $\frac{d^3y}{dx^3}$, $y^{(3)}$.

Производная порядка n есть производная от производной порядка (n-1), обозначается одним из символов: $y^{(n)}$, $f^{(n)}(x)$, $\frac{d^n y}{dx^n}$

<u>Производная второго порядка для функции</u> $\begin{cases} x = \varphi(t) \\ v = \psi(t) \end{cases}$, заданной параметрически,

вычисляется по формуле: $y''_{xx} = \frac{(y'_x)_t}{r'}$.

IV. Решение задач:

25. Определить приращение Δy и дифференциал dy для функции $y = x^3$ при переходе х от значения x=2 к значению $x_1=2,01$.

Найти производные и дифференциалы второго порядка.

$$26. \ \ y = x^3 - 4x^2 + 5x - 1$$

$$27. \ y = x \cdot \ln(x+1)$$

28.
$$y = \sin^2 3x$$

Найти производные второго порядка от функций, заданных неявно или параметриченски.

$$29. \begin{cases} x = \arccos \sqrt{t} \\ y = \sqrt{t - t^2} \end{cases}$$

$$30. \ y^3 - 3y + 3x = 1$$

$$31. \ x^2 + y^2 = 1$$

Найти производные п-го порядка

32.
$$y = 2^x$$

$$33. \ y = \cos^2 x$$

34.
$$y = \ln x$$

Вычислить приближенно, применяя понятие дифференциала.

38.
$$\frac{5}{0,9997}$$

39.
$$\sin 3^{\circ}$$

V. Аудиторная самостоятельная работа.

1.
$$y = 3x^4 - 5x^3 + 2x^2 - x$$

 $y''(1) - ?, d^2y - ?$

1.
$$y = 3x^4 - 5x^3 + 2x^2 - x$$
 2. $y = (2x+5)^3$, $y'''(0) - ?$, $d^3y - ?$ 3. $y = \frac{1}{x-1}$, $y''(2) - ?$,

3.
$$y = \frac{1}{x-1}, y''(2) - ?$$

4.
$$y = \sin x, y^{(n)} - ?$$

5.
$$y = x^2 \cdot \sqrt{1 - x^2}$$
, $y''(1) - ?$, $d^2y - ?$ 6. $y = e^{-x^2}$, $y^{IV} - ?$

7. Показать, что функция $y = x^2 \cdot \ln x$ удовлетворяет уравнению xy'' - y' = 2x

8. Показать, что функция $y = e^x \cdot \sin 2x$ удовлетворяет уравнению y'' - 2y' + 5y = 0

- 9. Показать, что функция $y = 4e^{-2x} 5e^x$ удовлетворяет уравнению xy''' 3y' + 2y = 0
- 10. $\cos 29^0 \approx ?$

11. $\sqrt[4]{17} \approx ?$

12. $\sin 31^0 \approx ?$

13. $\sqrt[3]{1,21} \approx ?$

14. $\sqrt{9,02} \approx ?$

- 15. $\ln 1,2 \approx ?$
- 16. Определить приращение Δy и дифференциал dy для функции $y = 3x^2 + 5x 4$ при переходе x от значения x=2 к значению $x_1=1,98$.
- 17. Определить приращение Δy и дифференциал dy для функции $y = 2x^3 x^2 + 3$ при переходе x от значения x=3 к значению x_1 =3,001.

Контрольные вопросы

- 13. Как записать производную второго, ..., *n*-го порядка?
- 14. Как найти производную второго, ..., *n*-го порядка?
- 15. Как записать дифференциал первого, второго, ..., *n*-го порядка?
- 16. Как найти дифференциал первого, второго, ..., *n*-го порядка?
- 17. Перечислите свойства дифференциала.
- 18. Как найти производную второго порядка для функции, заданной параметрически?
- 19. Как выполняются приближенные вычисления с помощью дифференциала?

ПЗ № 5. Тема: Интегрирование заменой переменной в неопределенном интеграле.

Требования к уровню усвоения содержания темы.

<u>Знать:</u>

- 1. Правило вычисления интегралов с помощью метода замены переменной.
- 2. Метод интегрирования по частям.

Уметь:

- 1. Вычислять интегралы с помощью метода замены переменной.
- 2. Интегрировать по частям.
- 3. Выбирать метод интегрирования и сводить интеграл к табличному.

Методические указания по изучению темы.

- 1. Проработать теоретический материал лекции по теме и дополнительно [1]с.247-275, [12/1]с.193-220, разобрав приведенные примеры.
- 2. Выполнить внеаудиторную самостоятельную работу.

Порядок работы:

І. Проверка теоретических знаний.

1. Работа по таблице интегралов.

Вариант 1

Бариант 1					
$\int x^n dx =$	=	$\int \frac{dx}{x^2 + a^2} =$	=	$\int \cos x dx =$	=
$\int A(kx+b)^n dx =$	=	$\int \frac{dx}{x^2 - a^2} =$	=	$\int A\cos(kx+b)dx =$	=
$\int Adx =$	=	$\int \frac{dx}{a^2 - x^2} =$	=	$\int \frac{dx}{\sin^2 x} =$	=
$\int \frac{dx}{x} =$	=	$\int \frac{dx}{\sqrt{a^2 - x^2}} =$	=	$\int \frac{dx}{\sin^2(kx+b)} =$	=
$\int \frac{dx}{kx+b} =$	=	$\int \frac{dx}{\sqrt{x^2 \pm a}} =$	=	$\int \frac{dx}{\cos^2 x} =$	=
		Вариан	нт 2		
$\int a^x dx =$	=	$\int \sqrt{a^2 - x^2} dx =$	=	$\int \frac{dx}{\cos^2(kx+b)} =$	=
$\int a^{kx+b} dx =$	=	$\int \sqrt{x^2 \pm a^2} dx =$	=	$\int tgxdx =$	=
$\int e^x dx =$	=	$\int \sin x dx =$	=	$\int tg(kx+b)dx =$	=
$\int e^{kx+b}dx =$	=	$\int A \sin(kx + b) dx =$	=	$\int ct gx dx =$	=
				$\int ctg(kx+b)dx =$	=

- 2. Дополните математические предложения.
 - а) $\int f(x) dx = \dots$ формула интегрирования подстановкой.

II. Тренировочные упражнения.

Пример 1

$$\int \frac{dx}{(1+2x)^2} = \begin{vmatrix} t = 1+2x \\ dt = (1+2x)'dx = 2dx \\ dx = \frac{dt}{2} = \frac{1}{2}dt \end{vmatrix} = \int \frac{\frac{1}{2}dt}{t^2} = \frac{1}{2}\int \frac{dt}{t^2} = \frac{1}{2}\int t^{-2}dt = \frac{1}{2}\cdot\frac{t^{-2+1}}{-2+1} + C = \frac{1}{2}\cdot\frac{t^{-1}}{-1} + C = \frac{t^{-1}}{-2} + C = -\frac{1}{2t} + C = -\frac{1}{2(1+2x)} + C = -\frac{1}{2+4x} + C$$

Найдите, используя пример 1, следующие интегралы.

$$1. \quad \int \frac{dx}{\left(8-3x\right)^4}$$

$$2. \int \frac{x^2 dx}{8 + x^3}$$

$$3. \quad \int \frac{xdx}{11 - 5x^2}$$

$$4. \quad \int \frac{xdx}{\sqrt{1+3x^2}}$$

$$5. \int \frac{\cos x dx}{4 + \sin^2 x}$$

$$6. \quad \int \frac{e^x dx}{\sqrt{9 - e^{2x}}}$$

III. Аудиторная самостоятельного решения. Вариант 3 Вариант 1 1. $\int (4+5x)^{99} dx$ 1. $\int \frac{dx}{(7x-11)^3}$ 1. $\int \frac{dx}{(4-5x)^9}$ 2. $\int \frac{2+5x}{x^2+9} dx$ 2. $\int \frac{3x-1}{x^2+4} dx$ 2. $\int \frac{8+3x}{x^2-16} dx$ 3. $\int \frac{dx}{\cos^2 x \cdot \sqrt[4]{4tgx + 2}}$ 3. $\int \frac{\sqrt{tgx+1}dx}{(x-t)^2}$ 3. $\int \frac{\cos x dx}{\sqrt{5\sin x}}$ Вариант 5 Вариант 4 Вариант 6 1. $\int \frac{ctgxdx}{\sin^2 x}$ 1. $\int \frac{\sqrt[3]{arctg^2} 4x}{1+16x^2} dx$ 1. $\int \frac{dx}{x \cdot \sqrt[3]{\ln x}}$ 2. $\int \frac{7-13x}{x^2+4} dx$

$$2. \quad \int \frac{5x-1}{x^2+25} dx$$

$$10x - 3x^2$$

$$2. \quad \int \frac{0.5x - 0.16}{x^2 + 64} dx$$

$$3. \int \frac{\ln^3(7x+1)}{7x+1} dx$$

$$3. \int \frac{10x - 3x^2}{x^3 - 5x^2} dx$$

1. $\int e^{\sin 2x} \cdot \cos 2x dx$

$$3. \int \frac{e^{ctg2x}dx}{\sin^2 2x}$$

Вариант 7

$$1. \int \frac{\sqrt{\arcsin 2x}}{\sqrt{1-4x^2}} dx$$

$$3 \quad (5-3x)$$

Вариант 8

Вариант 9
1.
$$\int \frac{3^{tgx} dx}{\cos^2 x}$$

$$2. \quad \int \frac{4x+11}{x^2+16} dx$$

$$2. \int \frac{5-3x}{x^2+9} dx$$

2.
$$\int \frac{13-4x}{x^2+9} dx$$

$$3. \int \frac{e^x dx}{2e^x + 7}$$

$$3. \int \frac{(8-\sqrt{x})^3}{\sqrt{x}} dx$$

3.
$$\int x^2 6^{1-x^3} dx$$

Вариант 0

$$1. \int \frac{\sqrt{\arccos 2x + 3}}{\sqrt{1 - 4x^2}} dx$$

2.
$$\int \frac{10x+3}{x^2+81} dx$$

$$3. \int \frac{dx}{(x^2+1)arcctgx}$$

IV. Контрольные вопросы:

- 1. Какие методы интегрирования вам известны?
- 2. В чем заключается метод интегрирования заменой переменной (подстановкой)?

ПЗ № 6. Тема: Интегрирование по частям в неопределенном интеграле.

Требования к уровню усвоения содержания темы.

Знать:

1. Метод интегрирования по частям.

Уметь:

- 1. Интегрировать по частям.
- 2. Выбирать метод интегрирования и сводить интеграл к табличному.

Методические указания по изучению темы.

- 3. Проработать теоретический материал лекции по теме и дополнительно [1]с.247-275, [12/1]с.193-220, разобрав приведенные примеры.
- 4. Выполнить внеаудиторную самостоятельную работу.

Порядок работы:

V. Проверка теоретических знаний.

Работа по таблице интегралов.

Вариант 1

Бариант 1						
$\int x^n dx =$	=	$\int \frac{dx}{x^2 + a^2} =$	=	$\int \cos x dx =$	=	
$\int A(kx+b)^n dx =$	=	$\int \frac{dx}{x^2 - a^2} =$	=	$\int A\cos(kx+b)dx =$	=	
$\int Adx =$	=	$\int \frac{dx}{a^2 - x^2} =$	=	$\int \frac{dx}{\sin^2 x} =$	=	
$\int \frac{dx}{x} =$	=	$\int \frac{dx}{\sqrt{a^2 - x^2}} =$	=	$\int \frac{dx}{\sin^2(kx+b)} =$	=	
$\int \frac{dx}{kx+b} =$	=	$\int \frac{dx}{\sqrt{x^2 \pm a}} =$	=	$\int \frac{dx}{\cos^2 x} =$	=	
Вариант 2						

$\int a^x dx =$	=	$\int \sqrt{a^2 - x^2} dx =$	=	$\int \frac{dx}{\cos^2(kx+b)} =$	=
$\int a^{kx+b} dx =$	=	$\int \sqrt{x^2 \pm a^2} dx =$	II	$\int tgxdx =$	=
$\int e^x dx =$	=	$\int \sin x dx =$	=	$\int tg(kx+b)dx =$	=
$\int e^{kx+b} dx =$	=	$\int A \sin(kx+b) dx =$	=	$\int ct gx dx =$	=
				$\int ctg(kx+b)dx =$	=

2. Дополните математические предложения.

$$\int u \, dv = \dots$$
 - формула интегрирования по частям.

3. Распределите следующие интегралы:

$$\int P(x) \ln x dx$$
, $\int P(x) e^{kx} dx$, $\int P(x) \arcsin x dx$, $\int P(x) \sin kx dx$, $\int P(x) \cos kx dx$, $\int P(x) \arccos x dx$, $\int P(x) \arccos x dx$, $\int P(x) \arctan x dx$, $\int P(x) \arctan x dx$, в два столбца так, чтобы в левом находились те, в которых $P(x)$ принимают за u , а в правом — те, в которых $P(x) dx$ есть dv .

u = P(x)	dv = P(x)

VI. Тренировочные упражнения.

Пример 1:

$$\int (1-3x)\cos x dx = \begin{vmatrix} u = 1-3x \\ dv = \cos x dx \\ du = (1-3x)' dx = -3 dx \\ v = \int \cos x dx = \sin x \end{vmatrix} = uv - \int v du = (1-3x)\sin x - \int \sin x \cdot (-3dx) = (1-3x)\sin x + 3\int \sin x dx = (1-3x)\sin x - 3\cos x + C$$

Найдите, используя образец, следующие интегралы.

1.
$$\int (x-7)\sin x dx$$

$$2. \quad \int \frac{\ln x dx}{x^3}$$

$$3. \int x^2 e^{4x} dx$$

4.
$$\int x \cdot arctgxdx$$

<u>Найдите интеграл</u> $\int e^{2x} \cos x dx$, используя следующий план.

$$\int e^{2x} \cos x dx = \begin{vmatrix} u = e^{2x} \\ dv = \cos x dx \\ du = \dots - 2 \end{vmatrix} = e^{2x} \cdot \dots - 2 \int \dots - 2$$

$$\int e^{2x} \cos x dx = e^{2x} \cdot \dots - \dots \int e^{2x} \cos x dx = e^{2x} \cdot \dots$$

$$\dots \int e^{2x} \cos x dx = e^{2x} \cdot \dots$$

$$\int e^{2x} \cos x dx = e^{2x} \cdot \dots$$

$$\int e^{2x} \cos x dx = e^{2x} \cdot \dots$$

VII. Аудиторная самостоятельного решения.

Вариант 1	Вариант 2	Вариант 3
$1. \int (x^2 + 2x)\cos 3x dx$	1. $\int arctg 3x dx$	$1. \int \frac{\ln 4x}{\sqrt{x}} dx$
$2. \int (2x+1) \cdot 3^x dx$	$2. \int e^{3x} (x^2 + 1) dx$	$2. \int \frac{x dx}{\cos^2 x}$
Вариант 4	Вариант 5	Вариант 6
$1. \int \frac{\ln x}{\sqrt[3]{x}} dx$	$1. \int \sqrt{x} \ln x dx$	$1. \int (5x - 6)\sin 3x dx$
$2. \int arctg(x-2)dx$	$2. \int e^{2x} \cos x dx$	$2. \int x^2 \ln(x+1) dx$
Вариант 7	Вариант 8	Вариант 9
$1. \int x \ln(x+2) dx$	1. $\int arctgxdx$	$1. \int \sqrt{x} \ln^2 x dx$

 $2. \quad \int 4^x \sin x dx$

- $2. \quad \int (x^2 6x)e^{-x}dx$
- $2. \int \frac{\arcsin x}{x^2} dx$

Вариант 0

$$1. \quad \int e^{-4x} \left(3x - \frac{1}{2} \right) dx$$

$$2. \quad \int 3^x (x+2) dx$$

VIII. Контрольные вопросы:

- 1. Какие методы интегрирования вам известны?
- 2. Расскажите о методе интегрирования по частям.
- 3. В каких видах интегралов P(x) принимают за u?
- 4. В каких видах интегралов P(x)dx принимают за dv?

ПЗ № 7. Тема: Исследование рядов на сходимость.

Цель выполнения задяния: исследование числового ряда на сходимость

Необходимо знять: основные формулы и признаки сравнения числовых рядов с положительными членами

Необходимо уметь: применять основные формулы и и признаки сравнения числовых рядов с положительными членами

Оборудование (приборы, материалы, дидактическое обеспечение): методические рекомендации к выполнению работы; задание и инструкционная карта для проведения практического занятия

Компьютерные программы: компьютерные программы не используются

Теория: Для выполнения заданий по данной теме необходимо предварительно изучить теоретические материалы, а также методические рекомендации к выполнению работы

Порядок выполнения задания, методические указания: - ознакомиться с теоретическими положениями по данной теме; - изучить ехему решения задач; выполнить задания практической работы; - сформулировать вывод

Дополнительные задания: Могут быть сформулированы по ходу занятия

Содержание отчета: отчет по практической работе должен содержать: основные определения, рассуждения по решению задач, необходимые вычисления, ответ; вывод по работе

Содержание работы.

Основные поизтив.

 Сумма членов бесконечной числовой последовательности называется числовым рядом.

$$a_1 + a_2 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$$

При этом числа a_{i} : a_{i} : a_{i} :... будем называть членами ряда, а a_{i} - общим членом ряда.

2 Суммы $S_a = a_1 + a_2 + ... + a_n = \sum_{k=1}^n a_k$, n = I, 2, ... называются частными

(частичными) суммами ряда. Таким образом, возможно рассматривать последовательности частичных сумм ряда S_b , S_b , ..., S_m ...

3 Ряд $a_1 + a_2 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$ называется сходящимся, если сходится

последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

$$S = \lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n$$

- 4 Бели последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие инкакой суммы.
 - 5. Свойства рядок:
- а) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

- 6) Рассмотрим два ряда ∑ a, и ∑ Ca, где С постоянное число. Если ряд ∑ a, сходится и его сумма равна S, то ряд тоже ∑ Ca, сходится, и его сумма равна CS. (C ≠ 0)
- в) Рассмотрим два ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$. Суммой или разностью этих рядов будет называться ряд $\sum_{n=1}^{\infty} (a_n + b_n)$, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами. Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ еходятся и их суммы равны соответственно S1 и S2, то ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ тоже сходится и его сумма равна $S_1 + S_2$.
 - г) Разность двух сходящихся рядов также будет сходящимся рядом
 - д) Сумма еходящегося и расходящегося рядов будет расходящимся рядом.
 - е). О сумме двух расходящихся рядов общего утверждения сделать нельзя.
- 6 Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то необходимо, чтобы общий член a_n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится.
- 7. Признак сравнения рядов с неотрицательными членами: Пусть даны два ряда $\sum_{n=1}^{\infty} a_n \text{ и } \sum_{n=1}^{\infty} b_n \text{ , } a_m \text{ } b_n \geq 0. \text{ Если } a_n \leq b_n \text{ при любом } n, \text{ то из сходимости ряда } \sum_{n=1}^{\infty} b_n \text{ следует сходимость ряда } \sum_{n=1}^{\infty} a_n \text{ , а из расходимость ряда } \sum_{n=1}^{\infty} a_n \text{ следует расходимость ряда } \sum_{n=1}^{\infty} b_n \text{ .}$
- 8 Предельный признак Даламбера: Если существует предел $\lim_{s\to\infty} \frac{a_{s+1}}{a_s} = p$, то при р < 1 ряд сходитея, а при р > 1 расходитея. Если р = 1, то на вопрос о сходимости ответить

9 Признак Коши. (радикальный признак): Если для ряда с неотрицительными членами существует предел $\lim_{n\to\infty} \overline{a_n} = q$, то при q<1 ряд сходится, а при q>1 ряд расходится.

Заказания:

Исходиме даниме:

1 Определить сходимость ряда $\sum_{i=1}^{n} \frac{n}{2^n}$.

Posterous co.

Воспользуемся признаком Даламбера:

$$a_n - \frac{n}{2^n}$$
; $a_{n-1} - \frac{n+1}{2^{n+1}}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} - \lim_{n \to \infty} \frac{(n+1)2^n}{2^{n+1}n} - \lim_{n \to \infty} \frac{(n+1)2^n}{2 \cdot 2^n n} - \frac{1}{2} \lim_{n \to \infty} \frac{(n+1)}{n} - \frac{1}{2} \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)}{1} - \frac{1}{2}$$

2. Определить сходиваюсть ряда
$$\sum_{i=1}^{n} \left(\frac{2n^2 + 1}{3n^2 + 5} \right)^n$$
.

Pemenes:

Воспользуемся признаком Коши:

$$\lim_{n\to\infty} \sqrt{\left(\frac{2n^2+1}{3n^2+5}\right)^n} = \lim_{n\to\infty} \left(\frac{2n^2+1}{3n^2+5}\right) = \frac{2}{3} < 1 \Rightarrow \text{ ряд сходится}$$

3. Определить еходиваеть ряда
$$\sum_{n=1}^{n} \frac{1}{\sqrt{n^2+19}}$$

Permanent

Воспользуемся признаком сравнения:

$$n^{4} + 19 > n^{4} \Rightarrow \frac{1}{\sqrt{n^{4} + 19}} < \frac{1}{\frac{1}{n^{2}}} \Rightarrow \sum_{i=1}^{n} \frac{1}{\sqrt{n^{4} + 19}} < \sum_{i=1}^{n} \frac{1}{\frac{1}{n^{2}}}$$

prod
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{n}{2}}} \operatorname{ctodumen}_{n}, m.s., \frac{5}{2} > 1 \Longrightarrow$$

исходный ряд сходится

Задания к практической работе.

Контрольные вопросы: 1 Что такое числовой ряд? 2 Что называется частичной сумной ряда? 3 Какой ряд называется сходящимся? 4 Какой ряд называется расходящимся? 5 Свойства числовых рядов. 6 Необходимое условие сходимости ряда. 7 Является зи необходимое условие сходимости достаточным? 8 В чем заключается признак сравнения сходимости ряда? 9 Признак Даламбера сходимости числового ряда. 10 Радикальный признак Коши сходимости

Литература:

- 1 Ю.М.Колягин Математика в 2-х книгах, учебник для СПО, 2008, книга 2
- 2 И.Л.Соловейчик Сборник задач по математике для техникумов, -М, 2003

ПЗ № 8. Тема: Решение дифференциальных уравнений 1-го порядка

Требования к уровню усвоения содержания темы.

<u>Знать:</u>

- 1. Классификацию дифференциальных уравнений.
- 2. Основную терминологию дифференциальных уравнений.

Уметь:

- 1. Определять порядок дифференциального уравнения.
- 2. Находить общее и частное решение дифференциальных уравнений с разделяющимися переменными.
- 3. Проверять решение дифференциального уравнения.

Методические указания по изучению темы.

- 5. Проработать теоретический материал лекции по теме и дополнительно [12/1]с.186-192, разобрав приведенные примеры.
- 6. Выполнить внеаудиторную самостоятельную работу.

Порядок работы:

І. Проверка теоретических знаний.

Закончите предложения.

- 1. Дифференциальным уравнением называется уравнение
- 2. Обыкновенным дифференциальным уравнением называется уравнение
- 3. Решение дифференциального уравнения считают общим....
- 4. Решение дифференциального уравнения называют частным...
- 5. Для проверки решения дифференциального уравнения нужно...
- 6. Для определения порядка дифференциального уравнения нужно...
- 7. Дифференциальное уравнение с разделяющимися переменными это уравнение вида...
- 8. Для решения дифференциального уравнения с разделяющимися переменными необходимо....

II. Тренировочные упражнения.

- 1. Доказать, что при любом C функция $y = \frac{C}{x} + x^2$ является решением уравнения $y' + \frac{y}{x} = 3x$. Найти частное решение удовлетворяющее условию y(1) = 1.
- 2. Проверить, является ли решением дифференциального уравнения $x^2y'-2xy=3$ функция $y=-\frac{1}{x}+3x^2$.
- 3. Решите дифференциальное уравнение $x^2dx + ydy = 0$
- 4. Решите дифференциальное уравнение $(1+x^2)dy 2x(y+3)dx = 0$
- 5. Решите дифференциальное уравнение $(xy^2 + x)dx = (y x^2y)dy$
- 6. Найдите частное решение уравнения $2yy' = 1 3x^2$, если y(1) = 3.

III. Упражнения для самостоятельного решения.

Аудиторная самостоятельная работа

<u>A1</u>

- 1. Проверить, является ли решением дифференциального уравнения $y' + tgx \cdot y = 0$ функция $y = 2\cos x$.
- 2. Решите дифференциальное уравнение (1+y)dx (1-x)dy = 0

<u>A2</u>

- 1. Проверить, является ли решением дифференциального уравнения $xy' + 2y = e^{-x^2} \text{ функция } y = 3 e^{-x^2}.$
- 2. Решите дифференциальное уравнение $(y-1)dx + x^2 dy = 0$

Б1

- 1. Проверить, является ли решением дифференциального уравнения $y' ctgx \cdot y = ctgx$ функция $y = C \sin x 1$.
- 2. Решите дифференциальное уравнение $xyy' = 1 x^2$

Б2

- 1. Проверить, является ли решением дифференциального уравнения $\frac{dy}{dx} + ctgx \cdot y = 6 \text{ функция } y = 4\sin x.$
- 2. Решите дифференциальное уравнение yy' + x = 1

B1

1. Проверить, является ли решением дифференциального уравнения

$$x^2y'' - 5x \cdot y' + 5y = \frac{1}{x}$$
 функция

$$y = \frac{1}{12x} + C_1 x^5 + C_2 x.$$

2. Решите дифференциальное уравнение xydx + (x+1)dy = 0

B2

- 1. Проверить, является ли решением дифференциального уравнения y'' 2y' + 50y = 0 функция $y = e^{2x} (C_1 \cos 3x + C_2 \sin 3x)$.
- 2. Решите дифференциальное уравнение $2x^{2}yy' + y^{2} = 2$

IV. Контрольные вопросы:

- 1. Какое уравнение называется дифференциальным?
- 2. Какие виды дифференциальных уравнений вам известны?
- 3. Какое дифференциальное уравнение называется обыкновенным?
- 4. Как определить порядок дифференциального уравнения?
- 5. Что называют общим и частным решением дифференциального уравнения?
- 6. Какое дифференциальное уравнение первого порядка называется уравнениями с разделяющимися переменными?

ПЗ № 9. Тема: Решение дифференциальных уравнений 2-го порядка. Требования к уровню усвоения содержания темы.

Знать:

- 1. Классификацию дифференциальных уравнений.
- 2. Основную терминологию дифференциальных уравнений.

Уметь:

- 1. Определять порядок дифференциального уравнения.
- 2. Находить общее и частное решение линейных однородных и неоднородных дифференциальных уравнений 2-го порядка.
- 3. Проверять решение дифференциального уравнения.

Методические указания по изучению темы.

- 7. Проработать теоретический материал лекции по теме и дополнительно [12/1]с.186-192, разобрав приведенные примеры.
- 8. Выполнить внеаудиторную самостоятельную работу.

Порядок работы:

І. Проверка теоретических знаний.

1.	<u>3</u> Линейным однород	Вакончить мател ным лифференци		-	
	постоянными вида	коэффициентам			
2.	Для его решения н заменив				,
3.	Если в характерис различные, то обще формуле	е решение дифф			
4.	Если в характеристи решение диффере				
5.	Если в характерис $k_2 = a - bi$, то общее формуле	решение диффе			
6.	Для нахождения дифференциального коэффициентами необходимо	уравнения	второго	порядка с	_
7.	Линейным неоднор называется уравнен			уравнением в	
8.	Общим	решением		НДУ	называется
	II. Тренировочные1. Найдите частное		енциально	ого уравнения	

y'' + 7y' + 12y = 0, удовлетворяющее начальным условиям: y(0)=1, y'(0)=-2

- 7. Найдите частное решение дифференциального уравнения y''-10y'+25y=0, удовлетворяющее начальным условиям: y(0)=2, y'(0)=8
- 8. Найдите частное решение дифференциального уравнения y'' + 2y' + 5y = 0, удовлетворяющее начальным условиям: y(0)=0, y'(0)=1
- 9. Найдите решение ЛНДУ $y'' y' 6y = (2x 1)e^{3x}$.

Решение.

 $y(x)=y_{oo}+y_{чн}$, где y_{oo} - общее решение однородного дифференциального уравнения (левая часть приравнивается к нулю), а $y_{чн}$ - частное решение неоднородного дифференциального уравнения (правая часть уравнения).

1) Решите однородное уравнение y'' - y' - 6y = 0

Таким образом, уоо=

2) Частное решение неоднородной части уравнения определяется по формуле: $y_{\text{чн}} = x \cdot (Ax + B)e^{3x}$

Отсюда,
$$y'_{\text{чн}} = y''_{\text{чн}} = y'''_{\text{чн}} = y''_{\text{чн}} = y''_{$$

3) Подставьте у, у', у" в исходное уравнение и сократите все слагаемые на $e^{3x} \neq 0$. Получили:

Приведите подобные:

4) Решите систему уравнений и найдите неопределенные коэффициенты.

5) Запишите решение, используя $y(x)=y_{oo}+y_{чн}$

$$y(x)=$$

10. Найдите решение ЛНДУ $y'' + y' - 2y = (x+2)e^{-2x}$.

Решение.

 $y(x)=y_{oo}+y_{чн}$, где y_{oo} - общее решение однородного дифференциального уравнения (левая часть приравнивается к нулю), а $y_{чн}$ - частное решение неоднородного дифференциального уравнения (правая часть уравнения).

6) Решите однородное уравнение y'' + y' - 2y = 0

Таким образом, уоо=

7) Частное решение неоднородной части уравнения определяется по формуле: $y_{\text{чн}} = x \cdot (Ax + B)e^{-2x}$

Отсюда,
$$y'_{\text{чн}} = y''_{\text{чн}} = y''_{\text$$

8) Подставьте y, y', y'' в исходное уравнение и сократите все слагаемые на $e^{-2x} \neq 0$. Получили:

Приведите подобные:

9) Решите систему уравнений и найдите неопределенные коэффициенты.

10) Запишите решение, используя $y(x)=y_{oo}+y_{чн}$

$$y(x)=$$

ПЗ № 10. Тема: Действия над матрицами.

Цели:

- рассмотреть теоретические основы темы, учить определять вид матрицы, её размер, выполнять действия над матрицами;
- развивать навыки работы с информацией, умение использовать основные методы, способы и средства получения, хранения, переработки информации;
- воспитывать аккуратность в расчетах; умение владеть навыками работы с информацией.

Вопросы для обсуждения:

- 1. Как записать матрицу размера $m \times n$?
- 2. Как определить размер матрицы?
- 3. Как записать матрицу-строку?
- 4. Запишите матрицу-столбец?
- 5. Чем отличается квадратная матрица от прямоугольной?
- 6. Чем отличается диагональная матрица от единичной?
- 7. Может ли нулевая матрица быть размером 5×6?

- 8. Какие виды матриц можно объединить под названием «квадратные матрицы»?
- 9. В чем заключается правило умножения матрицы на число?
- 10.В чем заключается правило сложения матриц?
- 11.В чем заключается правило умножения матрицы на матрицу?
- 12. Как возвести матрицу в степень?
- 13. Что происходит, когда матрица транспонируется?
- 14. Что происходит с матрицей, если её умножают на единичную матрицу? на нулевую матрицу?

Решение задач.

Задача 1. Даны матрицы:
$$A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Вычислить: а) 5A - (A+B); б) A^2 ; в) B^3 ; г) $(AB)' - A^3$.

Задача 2.Даны матрицы:
$$C = \begin{pmatrix} 8 & 9 & 10 \\ 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$$
 $D = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 0 & 1 & 2 \end{pmatrix}$ $F = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \\ 2 & -1 & 5 \end{pmatrix}$

Вычислить: a)CD - F'; b) C' + (D F)'

Задача 3. Вычислите AB и BA, если
$$A = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 2 & -1 \end{pmatrix}$

Задача 6. Вычислить:

Аудиторная самостоятельная работа.

1. Найти матрицу C=A'-3B, если
$$A = \begin{pmatrix} 1 & 2 & * \\ 0 & * & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & * \\ 5 & 6 \\ * & 3 \end{pmatrix}$

2. Найти матрицу C= -5A+2B, если
$$A = \begin{pmatrix} * & 4 \\ 5 & * \end{pmatrix}$$
, $B = \begin{pmatrix} 8 & * \\ * & 3 \end{pmatrix}$

3. Найти произведение матриц:
$$\begin{pmatrix} * & -2 \\ 5 & * \end{pmatrix} \cdot \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$$
; $\begin{pmatrix} * & -3 & 2 \\ 3 & -4 & * \\ 2 & * & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & * \\ 1 & * & 5 \\ * & 3 & 2 \end{pmatrix}$

4. Найти матрицу
$$A^*$$
, если $A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$

5. Найти матрицу D=ABC-3E, если
$$A = \begin{pmatrix} * & 2 \cdot * & -3 \\ * & 0 & 2 \cdot * \\ 4 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} * \\ 2 \cdot * \\ * \end{pmatrix}, C = (2 \cdot * & 0 & 5),$$

Е- единичная матрица

Литература:

- 1. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. 3—е изд., перераб. и доп. М.: Издательство Юрайт; ИД Юрайт, 2010. 909 с.
- 2. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. М: Проспект, 2003. 548 с.

ПЗ № 11. Тема: Вычисление определителей второго и третьего порядков. Цели :

- рассмотреть теоретические основы темы, учить понимать роль и значение информации;
- развивать навыки работы с информацией, умение использовать основные методы, способы и средства вычисления определителей второго и третьего порядка;
- воспитывать аккуратность в расчетах; умение владеть навыками работы с информацией.

Вопросы для обсуждения:

- 1. Что называется определителем?
- 2. Как обозначается определитель?
- 3. Как вычисляется определитель первого порядка?
- 4. Как вычисляется определитель второго порядка?
- 5. Как вычисляется определитель третьего порядка?
- 6. Нарисуйте схему Саррюса?

Решение задач.

<u>Задача 1.</u> Вычислить определители второго порядка: a) $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$; б) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$; в)

$$\begin{vmatrix} a^2 & ab \\ ab & b^2 \end{vmatrix}$$
 ; г) $\begin{vmatrix} n+1 & n \\ n & n-1 \end{vmatrix}$; д) $\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix}$; е) $\begin{vmatrix} \frac{1-t^2}{1+t^2} & \frac{2t}{1+t^2} \\ \frac{-2t}{1+t^2} & \frac{1-t^2}{1+t^2} \end{vmatrix}$

Задача 2. Вычислить определители третьего порядка:

Задача 3. Вычислить определители, используя свойства:

a)
$$\begin{vmatrix} -1 & 15 & 2 \\ 3 & 7 & -6 \\ 2 & 9 & -4 \end{vmatrix}$$
 6) $\begin{vmatrix} 0 & 2 & 5 \\ 0 & 3 & 6 \\ 0 & -1 & 2 \end{vmatrix}$ B) $\begin{vmatrix} 3 & 2 & 5 \\ -1 & 3 & 6 \\ 3 & 2 & 5 \end{vmatrix}$

 Задача 4.
 Решить уравнения: a)
 $\begin{vmatrix} x^2 & x & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{vmatrix} = 0$ б)
 $\begin{vmatrix} x^2 & 1 & 4 \\ x & -1 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 0$

Задача 5. Решить неравенства: a)
$$\begin{vmatrix} -3 & 1 & -2 \\ 1 & -2 & x \\ -1 & -1 & 2 \end{vmatrix} < 1 \quad 6) \begin{vmatrix} 5 & -3 & x \\ 1 & 1 & -2 \\ 2 & x+2 & -1 \end{vmatrix} \le 0$$

33

Аудиторная самостоятельная работа.

1. Вычислить определители второго порядка:

a)
$$\begin{vmatrix} 9 & * \\ 7 & 8 \end{vmatrix}$$
; 6) $\begin{vmatrix} \sin \frac{\alpha}{*} + \sin \frac{\beta}{*} & \cos \frac{\beta}{*} + \cos \frac{\alpha}{*} \\ \cos \frac{\beta}{*} - \cos \frac{\alpha}{*} & \sin \frac{\alpha}{*} - \sin \frac{\beta}{*} \end{vmatrix}$

2. Вычислить определители третьего порядка:

Литература:

- 1. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. 3—е изд., перераб. и доп. М.: Издательство Юрайт; ИД Юрайт, 2010. 909 с.
- 2. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. М: Проспект, 2003. 548 с.

ПЗ № 12. Тема: Вычисление обратной матрицы.

Цели:

- рассмотреть алгоритмы нахождения обратной матрицы;
- вырабатывать умение определять обратную матрицу для данной;
- воспитывать аккуратность в расчетах; умение владеть навыками работы с информацией.

Вопросы для обсуждения.

- 1. Обратная матрица.
- 2. Вычисление обратной матрицы с помощью элементарных преобразований.
- 3. Вычисление обратной матрицы с помощью союзной (присоединенной) матрицы.

Решение задач.

Задача 1. Для данных матриц найти обратные.

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 3 & -5 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

Задача 2. Решить матричные уравнения.

a)
$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$$
 $\cdot X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;

6)
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
 $\cdot X \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 3 & -1 \end{pmatrix}$;

$$\mathbf{B}) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 5 & 2 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$\Gamma) X \cdot \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{pmatrix}$$

Аудиторная самостоятельная работа.

1. Для данных матриц найти обратные.

a)
$$\begin{pmatrix} 2 & -* \\ -4 & 3 \end{pmatrix}$$
; 6) $\begin{pmatrix} -* & 4 \\ 8 & 0 \end{pmatrix}$; B) $\begin{pmatrix} -* & 15 & 2 \\ 3 & 7 & -6 \\ 2 & 9 & -4 \end{pmatrix}$; Γ) $\begin{pmatrix} 2 & 2 & 3 \\ * & -* & 0 \\ -* & 2 & * \end{pmatrix}$

2. Решить матричные уравнения.

$$\mathbf{a} \begin{pmatrix} * & 2 \\ 2 & 5 \end{pmatrix} \cdot X = \begin{pmatrix} 4 & -6 \\ 2 & * \end{pmatrix}; \, \mathbf{6}) \, \begin{pmatrix} 2 & * \\ 2 & * \end{pmatrix} \cdot X = \begin{pmatrix} 2 & * \\ 2 & * \end{pmatrix}; \, \mathbf{B}) \begin{pmatrix} * & 3 \\ * & 4 \end{pmatrix} \cdot X = \begin{pmatrix} * & -* \\ -* & * \end{pmatrix};$$

$$\Gamma) \ X \cdot \begin{pmatrix} * & * & -* \\ 2 & * & 0 \\ * & -* & * \end{pmatrix} = \begin{pmatrix} * & -* & 3 \\ 4 & 3 & 2 \end{pmatrix}; \ \Pi) \begin{pmatrix} -* & 0 \\ * & -* \end{pmatrix} \cdot X \cdot \begin{pmatrix} -* & 0 \\ * & -* \end{pmatrix} = \begin{pmatrix} * & 2 \\ 3 & 4 \end{pmatrix};$$

e)
$$\begin{pmatrix} * & * & -* \\ 2 & * & 0 \\ * & -* & * \end{pmatrix} \cdot X = \begin{pmatrix} * \\ 2 \\ 3 \end{pmatrix}$$

Литература:

- 1. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. 3—е изд., перераб. и доп. М.: Издательство Юрайт; ИД Юрайт, 2010. 909 с.
- 2. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. М: Проспект, 2003. 548 с.

ПЗ № 13. Тема: Решение системы линейных уравнений по формулам Крамера.

Цели:

- рассмотреть системы линейных уравнений и их решение с помощью формул Крамера;
- решать системы линейных уравнений – развивать умение методами;
- воспитывать аккуратность в расчетах, умение владеть навыками работы с информацией.

Решение задач.

Решить системы линейных уравнений по формулам Крамера.

1.
$$\begin{cases} 17x_1 - 9x_2 = -1 \\ -13x_1 + 19x_2 = 25 \end{cases}$$
; 2.
$$\begin{cases} x_1 - x_2 = -2 \\ 2x_1 + x_2 = 14 \end{cases}$$

$$\begin{cases}
 x_1 - x_2 = -2 \\
 2x_1 + x_2 = 14
\end{cases}$$

3.
$$\begin{cases} 4x_1 - 2x_2 = 3 \\ x_1 + 3x_2 = -1 \end{cases}$$

4.
$$\begin{cases} 3x_1 + 2x_2 = 7 \\ 4x_1 - 5x_2 = 40 \end{cases}$$

$$5. \begin{cases} 2x_1 - x_2 = 3 \\ x_1 + x_2 = 3 \end{cases}$$

1.
$$\begin{cases} 17x_1 - 3x_2 - 1 \\ -13x_1 + 19x_2 = 25 \end{cases}$$
2.
$$\begin{cases} 2x_1 + x_2 = 14 \end{cases}$$
3.
$$\begin{cases} x_1 - 2x_2 - 3 \\ x_1 + 3x_2 = -1 \end{cases}$$
4.
$$\begin{cases} 3x_1 + 2x_2 = 7 \\ 4x_1 - 5x_2 = 40 \end{cases}$$
5.
$$\begin{cases} 2x_1 - x_2 = 3 \\ x_1 + x_2 = 3 \end{cases}$$
6.
$$\begin{cases} 2x_1 + 3x_2 - 4x_3 = -4 \\ x_1 - 2x_2 + 5x_3 = 12 \\ 6x_1 - 3x_2 + x_3 = 3 \end{cases}$$

7.
$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 - x_3 = -1 \end{cases}$$
 8.
$$\begin{cases} 2x_1 + 2x_2 - 2x_3 = 8 \\ x_1 + x_2 + x_3 = 6 \\ 4x_1 - 2x_2 - x_3 = 7 \end{cases}$$
 9.
$$\begin{cases} x_1 + 2x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + x_3 = 3 \\ 4x_1 + x_2 - x_3 = 16 \end{cases}$$

8.
$$\begin{cases} 2x_1 + 2x_2 - 2x_3 = 8 \\ x_1 + x_2 + x_3 = 6 \\ 4x_1 - 2x_2 - x_3 = 7 \end{cases}$$

9.
$$\begin{cases} x_1 + 2x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + x_3 = 3 \\ 4x_1 + x_2 - x_3 = 16 \end{cases}$$

$$10.\begin{cases} 6x_1 - 2x_2 + 6x_3 = 2 \\ x_1 + x_2 - x_3 = 0 \\ 3x_1 + 2x_2 - x_3 = -3 \end{cases} \qquad 11.\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 - x_2 - 6x_3 = -1 \\ 3x_1 - 2x_2 = 8 \end{cases} \qquad 12.\begin{cases} x_1 + x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + 2x_3 = 0 \\ 4x_1 + x_2 + 4x_3 = 2 \end{cases}$$

11.
$$\begin{cases} x_1 + x_2 + x_3 = 2\\ 2x_1 - x_2 - 6x_3 = -3x_1 - 2x_2 = 8 \end{cases}$$

12.
$$\begin{cases} x_1 + x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + 2x_3 = 0 \\ 4x_1 + x_2 + 4x_3 = 2 \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2\\ x_1 + x_2 + 5x_3 + 2x_4 = 1\\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3\\ x_1 + x_2 + 3x_3 + 3x_4 = -3 \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2 \\ x_1 + x_2 + 5x_3 + 2x_4 = 1 \\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3 \\ x_1 + x_2 + 3x_3 + 3x_4 = -3 \end{cases} \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ x_1 + 3x_2 + 6x_3 + 10x_4 = 0 \\ x_1 + 4x_2 + 10x_3 + 20x_4 = 0 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 + 4x_2 - 2x_3 - 3x_4 = 18 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 + 4x_2 - 2x_3 - 3x_4 = 18 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$$

Литература:

1. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред.

- Н.Ш. Кремера. 3-е изд., перераб. и доп. М.: Издательство Юрайт; ИД Юрайт, 2010. – 909 с.
- 2. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. – M: Проспект, 2003. – 548 с.

ПЗ № 14. Тема: Решение системы линейных уравнений матричным методом и методом Гаусса

Цели:

- системы линейных уравнений и их решение с помощью метода Гаусса и матричного метода;
- развивать умение решать системы линейных уравнений указанными методами;
- воспитывать аккуратность в расчетах, умение владеть навыками работы с информацией.

Решение задач.

Решить системы линейных уравнений матричным методом и методом Гаусса.

1.
$$\begin{cases} 17x_1 - 9x_2 = -1 \\ -13x_1 + 19x_2 = 25 \end{cases}$$
; 2.
$$\begin{cases} x_1 - x_2 = -2 \\ 2x_1 + x_2 = 14 \end{cases}$$

$$\begin{cases}
 x_1 - x_2 = -2 \\
 2x_1 + x_2 = 14
\end{cases}$$

3.
$$\begin{cases} 4x_1 - 2x_2 = 3 \\ x_1 + 3x_2 = -1 \end{cases}$$

4.
$$\begin{cases} 3x_1 + 2x_2 = 7 \\ 4x_1 - 5x_2 = 40 \end{cases}$$

$$5. \begin{cases} 2x_1 - x_2 = 3 \\ x_1 + x_2 = 3 \end{cases}$$

4.
$$\begin{cases} 3x_1 + 2x_2 = 7 \\ 4x_1 - 5x_2 = 40 \end{cases}$$
5.
$$\begin{cases} 2x_1 - x_2 = 3 \\ x_1 + x_2 = 3 \end{cases}$$
6.
$$\begin{cases} 2x_1 + 3x_2 - 4x_3 = -4 \\ x_1 - 2x_2 + 5x_3 = 12 \\ 6x_1 - 3x_2 + x_3 = 3 \end{cases}$$

7.
$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 - x_3 = -1 \end{cases}$$
 8.
$$\begin{cases} 2x_1 + 2x_2 - 2x_3 = 8 \\ x_1 + x_2 + x_3 = 6 \\ 4x_1 - 2x_2 - x_3 = 7 \end{cases}$$
 9.
$$\begin{cases} x_1 + 2x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + x_3 = 3 \\ 4x_1 + x_2 - x_3 = 16 \end{cases}$$

8.
$$\begin{cases} 2x_1 + 2x_2 - 2x_3 = 8 \\ x_1 + x_2 + x_3 = 6 \\ 4x_1 - 2x_2 - x_3 = 7 \end{cases}$$

9.
$$\begin{cases} x_1 + 2x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + x_3 = 3 \\ 4x_1 + x_2 - x_3 = 16 \end{cases}$$

$$10.\begin{cases} 6x_1 - 2x_2 + 6x_3 = 2 \\ x_1 + x_2 - x_3 = 0 \\ 3x_1 + 2x_2 - x_3 = -3 \end{cases} \qquad 11.\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 - x_2 - 6x_3 = -1 \\ 3x_1 - 2x_2 = 8 \end{cases} \qquad 12.\begin{cases} x_1 + x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + 2x_3 = 0 \\ 4x_1 + x_2 + 4x_3 = 2 \end{cases}$$

11.
$$\begin{cases} x_1 + x_2 + x_3 = 2\\ 2x_1 - x_2 - 6x_3 = -1\\ 3x_1 - 2x_2 = 8 \end{cases}$$

12.
$$\begin{cases} x_1 + x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + 2x_3 = 0 \\ 4x_1 + x_2 + 4x_3 = 2 \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2\\ x_1 + x_2 + 5x_3 + 2x_4 = 1\\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3\\ x_1 + x_2 + 3x_3 + 3x_4 = -3 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ x_1 + 3x_2 + 6x_3 + 10x_4 = 0 \\ x_1 + 4x_2 + 10x_3 + 20x_4 = 0 \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2 \\ x_1 + x_2 + 5x_3 + 2x_4 = 1 \\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3 \\ x_1 + x_2 + 3x_3 + 3x_4 = -3 \end{cases} \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ x_1 + 3x_2 + 6x_3 + 10x_4 = 0 \\ x_1 + 4x_2 + 10x_3 + 20x_4 = 0 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 + 4x_2 - 2x_3 - 3x_4 = 18 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$$

Литература:

- 3. Кремер, Н.Ш. Высшая математика для экономистов: Учебное пособие для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; под ред. Н.Ш. Кремера. 3–е изд., перераб. и доп. М.: Издательство Юрайт; ИД Юрайт, 2010. 909 с.
- 4. Щипачев, В.С. Курс высшей математики: Учебное пособие для вузов / В.С. Щипачев. М: Проспект, 2003. 548 с.

3. Комплект оценочных средств для промежуточной аттестации

3.1. Экзаменационные билеты (ЭБ)

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

Билет №

1

- 1. Решить предел $\lim_{x\to 0} \frac{x^3 x^2 + 2x}{x^2 + x}$
- 2. Найти производную $y = 3^{tgx} + x \cos 5x$
- 3. Вычислить определитель: $\begin{vmatrix} 3 & -1 & 1 \\ 2 & 3 & -1 \\ 5 & 6 & 2 \end{vmatrix}$
- 4. Решить интеграл $\int 8\cos x \, dx$
- 5. Найти значение определенного интеграла $\int_{1}^{2} x^{3} dx$
- 6. Выполнить действия: 5A AB, если $A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

(подпись)

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

1021

группа

- 1. Решить предел $\lim_{x\to 4} \frac{3x^2 + 5x 8}{2x^2 + 3x 5}$
- 2. Найти производную $y = \sin 2x \cos 3x$
- 3. Найти определитель: $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$
- 4. Решить интеграл $\int \cos 9x \, dx$

- 5. Найти значение определенного интеграла $\int_{1}^{2} \frac{x^2 dx}{1+x^3}$
- 6. Выполнить действия: (AB)' A³, если $A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$

Преподаватель: И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

- 1. Решить предел $\lim_{x\to 2} \frac{x^2 x + 1}{x 3}$
- 2. Найти производную $y = x^5 e^{x^7 + 3x^2}$

- 3. Вычислить определитель: $\begin{vmatrix} 1 & 2 & -3 \\ -2 & 5 & 4 \\ 0 & 7 & -1 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{dx}{6x+5}$
- 5. Найти значение определенного интеграла $\int_{1}^{4} \frac{x dx}{1+x^2}$
- 6. Выполнить действия: B^3 , если $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Преподаватель: ______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

Билет №

4

- 1. Решить предел $\lim_{x\to 0} \frac{3x^2 2x}{2x^2 5x}$
- 2. Найти производную $y = e^{-x^2}$
- 3. Вычислить определитель: $\begin{vmatrix} 3 & 2 & 5 \\ -1 & 3 & 6 \\ 1 & -1 & 2 \end{vmatrix}$ 4. Решить интеграл $\int \sin\left(\frac{\Pi}{6} 3x\right) dx$
- 5. Найти значение определенного интеграла $\int_{1}^{3} (1+2x)^{-2} dx$
- 6. Выполнить действия: АВ, если $A = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 & -1 \end{pmatrix}$

Преподаватель: ______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

(специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 5

- 1. Решить предел $\lim_{x\to 3} \frac{x^2 5x + 6}{3x^2 9x}$
- 2. Найти производную $y = 3^{\ln x}$
- 3. Вычислить определитель: $\begin{vmatrix} -2 & 3 & 4 \\ -1 & -3 & 5 \\ 2 & 1 & -1 \end{vmatrix}$
- 4. Решить интеграл $\int (14x-9)^8 dx$
- 5. Найти значение определенного интеграла $\int_{1}^{5} (4+3x)^2 dx$
- 6. Найти алгебраические дополнения для каждого элемента матрицы $\begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет №

- 1. Решить предел $\lim_{x\to 4} \frac{16-x^2}{x^3-64}$
- 2. Найти производную $y = \arccos(4x-1)$
- 3. Вычислить определитель: $\begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{dx}{(1+2x)^2}$
- 5. Найти значение определенного интеграла $\int_{1}^{4} (1+2x)^2 dx$
- 6. Найти алгебраические дополнения для элементов $a_{21},\,a_{31}$ матрицы

$$\begin{pmatrix}
2 & 3 & 2 \\
1 & 2 & -3 \\
3 & 4 & 1
\end{pmatrix}$$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет №

7

- 1. Решить предел $\lim_{x\to 4} \frac{16-x^2}{x^3-64}$
- 2. Найти производную y = arctg3x
- 3. Вычислить определитель: $\begin{vmatrix} 7 & -3 & 5 \\ 5 & 2 & 1 \\ 2 & -1 & 3 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{x^2 dx}{8+x^3}$
- 5. Найти значение определенного интеграла $\int_{0}^{3} xe^{5x} dx$
- 6. Найти алгебраические дополнения для элементов a_{11} , a_{32} матрицы

$$\begin{pmatrix}
2 & 3 & 2 \\
1 & 2 & -3 \\
3 & 4 & 1
\end{pmatrix}$$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

2 3 семестр курс 1021 группа

Билет № 8

- 1. Решить предел $\lim_{x\to\infty} \frac{x-8}{2x-2}$
- 2. Найти производную $\frac{x^2-1}{3+5x}$ 3. Вычислить определитель: $\begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix}$ 4. Решить интеграл $\int \frac{xdx}{11-5x^2}$
- 5. Найти значение определенного интеграла $\int_{0}^{1} xe^{\frac{1}{2}x} dx$
- 6. Найти матрицу, обратную к данной $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 9

- 1. Решить предел $\lim_{x\to\infty} \frac{2x^3 3x^2 + 1}{x^3 + 4x^2 + 2x}$
- 2. Найти производную $y = \arcsin 7x$
- 3. Вычислить определитель: $\begin{vmatrix} 4 & 7 & 11 \\ 4 & 2 & -2 \\ 3 & 3 & 3 \end{vmatrix}$
- 4. Решить интеграл $\int (x-7)\sin x dx$
- 5. Найти значение определенного интеграла $\int_{0}^{5} xe^{x} dx$
- 6. Найти Δ_1 системы: $\begin{cases} x_1 + 2x_2 x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 x_3 = -1 \end{cases}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 10

- 1. Решить предел $\lim_{x\to\infty} \frac{3x^2 5x + 4}{x^2 + 2x + 3}$
- 2. Найти производную $y = arctg \sqrt{x-1}$
- 3. Вычислить определитель: $\begin{vmatrix} -1 & -2 & -10 \\ 1 & 9 & 10 \\ 1 & 2 & 0 \end{vmatrix}$
- 4. Решить интеграл $\int x \ln(x+1) dx$
- 5. Найти значение определенного интеграла $\int_{0}^{1} xe^{x} dx$
- 6. Выполнить действия: (AB)', если $A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

- 1. Даны числа z_1 =2+3i, z_2 =I-2i. Найти z_1 + z_2 , z_1 - z_2 , z_1z_2 , $\frac{z_1}{z_2}$
- 2. Найти производную $g = y^3 3^{tgx} + x \cos 5y$
- 3. Определить сходимость ряда $\sum_{n=1}^{\infty} \frac{n}{2^n}$.
- 4. Решить интеграл $\int 8\cos x \, dx$
- 5. Доказать, что при любом C функция $y = \frac{C}{x} + x^2$ является решением уравнения $y' + \frac{y}{x} = 3x$. Найти частное решение удовлетворяющее условию y(1) = 1.
- 6. Выполнить действия: 5A AB, если $A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Преподаватель:______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

- 1. Даны числа z_1 =-2+5i, z_2 =3-4i. Найти z_1 + z_2 , z_1 z_2 , z_1 z₂, $\frac{z_1}{z_2}$
- 2. Найти производную $g = y^{5} \sin 2x x^{3} \cos 3y$
- 3. Исследовать сходимость $\sum_{n=1}^{\infty} \frac{3^n}{n}$
- 4. Решить интеграл $\int \cos 9x \, dx$
- 5. Решите дифференциальное уравнение $x^2 dx + y dy = 0$

> Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

- 1. Вычислить: $\frac{2+i}{3+4i}$
- 2. Найти производную $s = y^5 e^{x^7 + 3x^2}$
- 3. Исследовать сходимость $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$

- 4. Решить интеграл $\int \frac{dx}{6x+5}$
- 5. Решите дифференциальное уравнение $(1+x^2)dy 2x(y+3)dx = 0$
- 6. Выполнить действия: B^3 , если $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Преподаватель: ______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

1. Вычислить:
$$\frac{\frac{1}{2} - 3i}{2 + \frac{1}{3}i}$$

- 2. Найти производную $s = y^3 e^{-x^2}$
- 3. Исследовать сходимость $\sum_{n=1}^{\infty} \frac{(n!)^2}{(3n)!}$
- 4. Решить интеграл $\int \sin \left(\frac{\Pi}{6} 3x \right) dx$
- 5. Решите дифференциальное уравнение $(xy^2 + x)dx = (y x^2y)dy$
- 6. Выполнить действия: АВ, если $A = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 & -1 \end{pmatrix}$

Преподаватель:______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

15

- 1. Вычислить: $z^2 u z^4$, если $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$
- 2. Найти производную $g = y^5 3^{\ln x}$
- 3. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{2n-3}{5n+2}\right)^{\frac{n}{2}}$ 4. Решить интерго
- 4. Решить интеграл $\int (14x 9)^8 dx$
- 5. Найдите частное решение уравнения $2yy' = 1 3x^2$, если y(1) = 3.
- 6. Найти алгебраические дополнения для каждого элемента матрицы

Преподаватель:		И.С. Кузнецова
_	(подпись)	

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

3 2 семестр курс

Билет № 16

- 1. Найти: i^{59} , i^7 , i^{32}
- 2. Найти производную $g = y \cdot \arccos(4x 1)$
- 3. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{3n+1}{4n+21} \right)^n$
- 4. Решить интеграл $\int \frac{dx}{(1+2x)^2}$
- 5. Проверить, является ли решением дифференциального уравнения $y' + tgx \cdot y = 0$ функция $y = 2\cos x$.
- 6. Найти алгебраические дополнения для элементов а₂₁, а₃₁ матрицы

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$$

Элементы высшей математики

Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет №

17

- 1. Выполнить действия: $\left(-2 + \left(1 + i\right)^3 + \frac{31 17i}{4 3i}\right) \cdot \frac{1 + i}{6} 1$
- 2. Найти производную $s = y^2 arctg 3x$
- 3. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{(2n)!}$
- 4. Решить интеграл $\int \frac{x^2 dx}{8+x^3}$
- 5. Решите дифференциальное уравнение (1+y)dx (1-x)dy = 0
- 6. Найти алгебраические дополнения для элементов a_{11} , a_{32} матрицы

$$\begin{pmatrix}
2 & 3 & 2 \\
1 & 2 & -3 \\
3 & 4 & 1
\end{pmatrix}$$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр курс 1021 группа

- 1. Представить в тригонометрической и показательной формах комплексное число $z=4-4\sqrt{3}$ і
- 2. Найти производную $s = \frac{y^2 1}{3 + 5x}$
- 3. Исследовать сходимость $\sum_{n=1}^{\infty} \frac{5^n + 1}{2^n}$
- 4. Решить интеграл $\int \frac{xdx}{11-5x^2}$
- 5. Проверить, является ли решением дифференциального уравнения $xy' + 2y = e^{-x^2}$ функция $y = 3 - e^{-x^2}$.
- 6. Найти матрицу, обратную к данной $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$

Преподаватель:		И.С. Кузнецова
	(полпись)	

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

Билет № 19

1. Выполнить умножение сначала комплексных чисел z_1 и z_2 , а затем, представив эти числа в показательной форме: $z_1 = 8 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right) z_2 = \frac{1}{2} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$

$$z_1 = 8\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)z_2 = \frac{1}{16}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$

- 2. Найти производную $s = y \cdot \arcsin 7x$
- 3. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{(n!)^n}{(2n)^n}$
- 4. Решить интеграл $\int (x-7)\sin x dx$
- 5. Решите дифференциальное уравнение $(y-1)dx + x^2 dy = 0$
- 6. Найти Δ_1 системы: $\begin{cases} x_1 + 2x_2 x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 x_3 = -1 \end{cases}$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр курс 2

группа 1021

Билет № 20

- 1. Найти z^9 , представив z в тригонометрической, а затем в показательной формах: $z = -1 + \sqrt{3}i$
- 2. Найти производную $s = y \cdot arctg \sqrt{x-1}$
- 3. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2(n-9)}}$ 4. Решить интере
- 4. Решить интеграл $\int x \ln(x+1) dx$
- 5. Решите дифференциальное уравнение $xyy' = 1 x^2$
- 6. Выполнить действия: (AB)', если $A = \begin{pmatrix} 1 & -6 \\ 7 & 8 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Преподаватель:_________(подпись) И.С. Кузнецова

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

3 2 семестр курс группа 1021

Билет № 21

- 1. Решить предел $\lim_{x\to 0} \frac{x^3 x^2 + 2x}{x^2 + x}$
- 2. Найти производную $y = 3^{1gx} + x \cos 5x$
- 3. Вычислить определитель: $\begin{vmatrix} 3 & -1 & 1 \\ 2 & 3 & -1 \\ 5 & 6 & 2 \end{vmatrix}$
- 4. Решить интеграл $\int 8\cos x \, dx$
- 4. Гешить из вачение определенного интеграла $\int_{1}^{2} x^{3} dx$ 6. Решить систему уравнений методом Крамера: $\begin{cases} x_{1} x_{2} + x_{3} = 3 \\ 2x_{1} + x_{2} + x_{3} = 11 \\ x_{1} + x_{2} + 2x_{3} = 8 \end{cases}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 22

- 1. Решить предел $\lim_{x\to 4} \frac{3x^2 + 5x 8}{2x^2 + 3x 5}$
- 2. Найти производную $y = \sin 2x \cos 3x$
- 3. Найти определитель: $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$
- 4. Решить интеграл $\int \cos 9x \, dx$
- 5. Найти значение определенного интеграла $\int_{1}^{2} \frac{x^2 dx}{1+x^3}$

Решить систему уравнений методом Гаусса: $\begin{cases} x_1 - x_2 + x_3 = 3 \\ 2x_1 + x_2 + x_3 = 11 \\ x_1 + x_2 + 2x_3 = 8 \end{cases}$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

- 1. Решить предел $\lim_{x\to 2} \frac{x^2 x + 1}{x 3}$
- 2. Найти производную $y = x^5 e^{x^7 + 3x^2}$
- 3. Вычислить определитель: $\begin{vmatrix} 1 & 2 & -3 \\ -2 & 5 & 4 \\ 0 & 7 & -1 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{dx}{6x+5}$
- 5. Найти значение определенного интеграла $\int_{1}^{4} \frac{x dx}{1 + x^2}$

Решить систему уравнений методом Гаусса: $\begin{cases} x_1 + 2x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + x_3 = 3 \\ 4x_1 + x_2 - x_3 = 16 \end{cases}$ 6. Преподаватель: И.С. Кузнецова

> Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

2 семестр курс

1021

группа

Билет №

24

- 1. Решить предел $\lim_{x\to 0} \frac{3x^2 2x}{2x^2 5x}$
- 2. Найти производную $y = e^{-x^2}$

- 3. Вычислить определитель: $\begin{vmatrix} 3 & 2 & 5 \\ -1 & 3 & 6 \\ 1 & -1 & 2 \end{vmatrix}$
- 4. Решить интеграл $\int \sin\left(\frac{\Pi}{6} 3x\right) dx$
- 5. Найти значение определенного интеграла $\int_{1}^{5} (1+2x)^{-2} dx$
- 6. Решить систему $\begin{cases} 2x_1 + 3x_2 4x_3 = -4 \\ x_1 2x_2 + 5x_3 = 12 \\ 6x_1 3x_2 + x_3 = 3 \end{cases}$

Преподаватель: ______И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет №

25

- 1. Решить предел $\lim_{x\to 3} \frac{x^2 5x + 6}{3x^2 9x}$
- 2. Найти производную $y = 3^{\ln x}$
- 3. Вычислить определитель: $\begin{vmatrix} -2 & 3 & 4 \\ -1 & -3 & 5 \\ 2 & 1 & -1 \end{vmatrix}$
- 4. Решить интеграл $\int (14x-9)^8 dx$
- 5. Найти значение определенного интеграла $\int_{1}^{5} (4+3x)^2 dx$
- 6. Решить систему $\begin{cases} x_1 + 2x_2 x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 x_3 = -1 \end{cases}$

Преподаватель: _____И.С. Кузнецова

Департамент образования Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Алексеевский колледж»

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2

группа 1021

Билет №

26

- 1. Решить предел $\lim_{x\to 4} \frac{16-x^2}{x^3-64}$
- 2. Найти производную $y = \arccos(4x 1)$
- 3. Вычислить определитель: $\begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{dx}{(1+2x)^2}$
- 5. Найти значение определенного интеграла $\int_{1}^{4} (1+2x)^2 dx$
- 6. Решить систему $\begin{cases} 2x_1 + 2x_2 2x_3 = 8 \\ x_1 + x_2 + x_3 = 6 \\ 4x_1 2x_2 x_3 = 7 \end{cases}$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 27

- 1. Решить предел $\lim_{x\to 4} \frac{16-x^2}{x^3-64}$
- 2. Найти производную y = arctg3x
- 3. Вычислить определитель: $\begin{vmatrix} 7 & -3 & 5 \\ 5 & 2 & 1 \\ 2 & -1 & 3 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{x^2 dx}{8 + x^3}$
- 5. Найти значение определенного интеграла $\int_{0}^{3} xe^{5x} dx$
- 6. Решить систему $\begin{cases} x_1 + 2x_2 x_3 = 7 \\ 2x_1 3x_2 + x_3 = 3 \\ 4x_1 + x_2 x_3 = 16 \end{cases}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 28

- 1. Решить предел $\lim_{x\to\infty} \frac{x-8}{2x-2}$
- 2. Найти производную $\frac{x^2-1}{3+5x}$
- 3. Вычислить определитель: $\begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix}$
- 4. Решить интеграл $\int \frac{xdx}{11-5x^2}$
- 5. Найти значение определенного интеграла $\int_{0}^{1} xe^{\frac{1}{2}x} dx$
- 6. Решить систему $\begin{cases} 6x_1 2x_2 + 6x_3 = 2\\ x_1 + x_2 x_3 = 0\\ 3x_1 + 2x_2 x_3 = -3 \end{cases}$

Учебная дисциплина Элементы высшей математики Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 29

- 1. Решить предел $\lim_{x\to\infty} \frac{2x^3 3x^2 + 1}{x^3 + 4x^2 + 2x}$
- 2. Найти производную $y = \arcsin 7x$
- 3. Вычислить определитель: $\begin{vmatrix} 4 & 7 & 11 \\ 4 & 2 & -2 \\ 3 & 3 & 3 \end{vmatrix}$
- 4. Решить интеграл $\int (x-7)\sin x dx$
- 5. Найти значение определенного интеграла $\int_{0}^{5} xe^{x} dx$
- 6. Найти Δ_2 системы: $\begin{cases} x_1 + 2x_2 x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 x_3 = -1 \end{cases}$

Учебная дисциплина Элементы высшей математики

Специальность 09.02.07 Информационные системы и программирование (специалист по информационным системам)

семестр 3 курс 2 группа 1021

Билет № 30

- 1. Решить предел $\lim_{x\to\infty} \frac{3x^2 5x + 4}{x^2 + 2x + 3}$
- 2. Найти производную $y = arctg \sqrt{x-1}$
- 3. Вычислить определитель: $\begin{vmatrix} -1 & -2 & -10 \\ 1 & 9 & 10 \\ 1 & 2 & 0 \end{vmatrix}$
- 4. Решить интеграл $\int x \ln(x+1) dx$
- 5. Найти значение определенного интеграла $\int_{0}^{1} xe^{x} dx$
- 6. Найти Δ_3 системы: $\begin{cases} x_1 + 2x_2 x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 18 \\ x_1 + x_2 x_3 = -1 \end{cases}$

4. Критерии оценивания

«5» «отлично»— студент показывает глубокое и полное овладение содержанием программного материала по УД в совершенстве владеет понятийным аппаратом и демонстрирует умение применять теорию на практике, решать различные практические и профессиональные задачи, высказывать и обосновывать свои суждения в форме грамотного, логического ответа (устного или письменного), а также высокий уровень овладение общими и профессиональными компетенциями и демонстрирует готовность к профессиональной деятельности;

«4» «хорошо»— студент в полном объеме освоил программный материал по УД владеет понятийным аппаратом, хорошо ориентируется в изучаемом материале, осознанно применяет знания для решения практических и профессиональных задач, грамотно излагает ответ, но содержание, форма ответа (устного или письменного) имеют отдельные неточности, демонстрирует средний уровень овладение общими и профессиональными компетенциями и готовность к профессиональной деятельности;

«З» «удовлетворительно» — студент обнаруживает знание и понимание основных положений программного материала по УД, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических и профессиональных задач, не умеет доказательно обосновать свои суждения, но при этом демонстрирует низкий уровень овладения общими и профессиональными компетенциями и готовность к профессиональной деятельности;

«2» «неудовлетворительно» — студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определении понятий, беспорядочно и неуверенно излагает программный материал по УД, не умеет применять знания для решения практических и профессиональных задач, не демонстрирует овладение общими и профессиональными компетенциями и готовность к профессиональной деятельности.

5. Информационное обеспечение

перечень учебных изданий, электронных изданий, электронных и Интернетресурсов, образовательных платформ, электронно-библиотечных систем, вебсистем для организации дистанционного обучения и управления им, используемые в образовательном процессе как основные и дополнительные источники.

Основные источники:

- 1.Элементы высшей математики (12-е изд.., стер.) учебник/ Григорьев В.П.-М.: ИЦ Академия,2017-400 с.
- 2. Математика: Учебник / В.П. Григорьев. М.: ИЦ Академия, 2016. 368 с.
- 3. Сборник задач по высшей математике (7-е изд.) учебное пособие/Григорьев В.- М.: ИЦ Академия,2017-160 с.

Дополнительные источники:

4. Подольский В.А. Сборник задач по математике: Учеб.пособие.-2-е изд., перераб. и доп. – М.: Выш.шк., 1999. – 495 с.

Электронные издания (электронные ресурсы):

- 1. Информационно-образовательная среда «Российская электронная школа» https://resh.edu.ru/ :
 - Урок № 7. Предел последовательности https://resh.edu.ru/subject/lesson/4921/start/200887/
 - Урок 8. Предел функции на бесконечности https://resh.edu.ru/subject/lesson/3932/start/225600/
 - Урок 9. Предел функции в точке. Непрерывность функции https://resh.edu.ru/subject/lesson/6112/start/200949/
 - Урок 10. Определение производной. Физический смысл производной https://resh.edu.ru/subject/lesson/4923/start/200980/
 - Урок 11. Правила дифференцирования https://resh.edu.ru/subject/lesson/3954/start/201011/
 - Урок 13. Производные элементарных функций https://resh.edu.ru/subject/lesson/6114/start/201073/
 - Урок 15. Возрастание и убывание функции https://resh.edu.ru/subject/lesson/3966/start/201135/
 - Урок 16. Экстремумы функции https://resh.edu.ru/subject/lesson/3987/start/273810/
 - Урок 18. Производная второго порядка. Выпуклость и точки перегиба https://resh.edu.ru/subject/lesson/6116/start/273928/
 - Урок 21. Первообразная https://resh.edu.ru/subject/lesson/4924/start/225713/
 - Урок 22. Правила вычисления первообразной https://resh.edu.ru/subject/lesson/3993/start/225744/

Цифровая образовательная среда СПО PROFобразование:

- Рябушко, А. П. Высшая математика. Теория и задачи. В 5 частях. Ч.1. Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной: учебное пособие / А. П. Рябушко, Т. А. Жур. — 2-е изд. — Минск : Вышэйшая школа, 2017. — 304 с. — ISBN 978-978-985-06-2885-5. — Текст 985-06-2884-8 (ч. 1), : электронный // образовательной Электронный pecypc цифровой среды СПО PROFобразование : [сайт]. — URL: https://profspo.ru/books/90754 обращения: 07.09.2020). — Режим доступа: для авторизир. Пользователей

- Рябушко, А. П. Высшая математика. Теория и задачи. В 5 частях. Ч.2. Комплексные числа. Неопределенный и определенный интегралы. Функции нескольких переменных : учебное пособие / А. П. Рябушко, Т. А. Жур. Минск : Вышэйшая школа, 2016. 272 с. ISBN 978-985-06-2766-7 (ч. 2), 978-985-06-2764-3. Текст : электронный // Электронный ресурс цифровой образовательной среды СПО PROFобразование : [сайт]. URL: https://profspo.ru/books/90755 (дата обращения: 07.09.2020). Режим доступа: для авторизир. Пользователей
- Рябушко, А. П. Высшая математика. Теория и задачи. В 5 частях. Ч.3. Обыкновенные дифференциальные уравнения. Ряды. Кратные интегралы : учебное пособие / А. П. Рябушко, Т. А. Жур. Минск : Вышэйшая школа, 2017. 320 с. ISBN 978-985-06-2798-8 (ч. 3), 978-985-06-2764-3. Текст : электронный // Электронный ресурс цифровой образовательной среды СПО РКОГобразование : [сайт]. URL: https://profspo.ru/books/90756 (дата обращения: 07.09.2020). Режим доступа: для авторизир. Пользователей

Электронно-библиотечная система:

IPR BOOKS - http://www.iprbookshop.ru/78574.html

Веб-система для организации дистанционного обучения и управления им:

Система дистанционного обучения ОГАПОУ «Алексеевский колледж» http://moodle.alcollege.ru/